On smoothly superslice knots

نویسندگان

  • Daniel Ruberman
  • DANIEL RUBERMAN
چکیده

We find smoothly slice (in fact doubly slice) knots in the 3-sphere with trivial Alexander polynomial that are not superslice, answering a question posed by Livingston and Meier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Obstructing Sliceness in a Family of Montesinos Knots

Using Gauge theoretical techniques employed by Lisca for 2-bridge knots and by Greene-Jabuka for 3-stranded pretzel knots, we show that no member of the family of Montesinos knots M(0; [m1 + 1, n1 + 2], [m2 + 1, n2 + 2], q), with certain restrictions on mi, ni, and q, can be (smoothly) slice. Our techniques use Donaldson’s diagonalization theorem and the fact that the 2-fold covers of Montisino...

متن کامل

Pretzel knots.dvi

We calculate the Ozsváth-Szabó τ concordance invariant of the pretzel knots P (2a+1, 2b+1, 2c+1) for any a, b, c ∈ Z. As an application we re-prove a result first obtained by Fintushel and Stern by which the only pretzel knot with Alexander polynomial 1 which is smoothly slice is the unknot. We also show that most pretzel knots which are algebraically slice are not smoothly slice. A further app...

متن کامل

The Slice-ribbon Conjecture for 3-stranded Pretzel Knots

We determine which among the 3-stranded pretzel knots P (p, q, r) with p, q, r odd are smoothly slice. We show that each of these is in fact ribbon thus proving the slice-ribbon conjecture for this family of knots.

متن کامل

A Concordance Invariant from the Floer Homology of Double Branched Covers

Ozsváth and Szabó defined an analog of the Frøyshov invariant in the form of a correction term for the grading in Heegaard Floer homology. Applying this to the double cover of the 3-sphere branched over a knot K, we obtain an invariant δ of knot concordance. We show that δ is determined by the signature for alternating knots and knots with up to nine crossings, and conjecture a similar relation...

متن کامل

Concordance Crosscap Number of a Knot

We define the concordance crosscap number of a knot as the minimum crosscap number among all the knots concordant to the knot. The four-dimensional crosscap number is the minimum first Betti number of non-orientable surfaces smoothly embedded in 4-dimensional ball, bounding the knot. Clearly the 4-dimensional crosscap number is smaller than or equal to the concordance crosscap number. We constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016